
NASA-TM-111625

c..-; '

BUCKLING BEHAVIOR OF LONG ANISOTROPIC

SUBJECTED TO COMBINED LOADS

PLATES

Michael P. Nemeth

NASA Langley Research Center
Hampton, Virginia 23681-0001

Presented at the AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference

AIAA Paper No. 95-1455

J

C
\

New Orleans, Louisiana

April 10-13, 1995





BUCKLING BEHAVIOR OF LONG ANISOTROPIC PLATES SUBJECTED TO
COMBINED LOADS

Michael P. Nemeth*

NASA Langley Research Center
Hampton, Virginia 23681-0001

Abs_act

A parametric study of the buckling behavior of
infinitely long symmetrically laminated anisotropic
plates subjected to combined loads is presented. The
study focuses on the interaction of a stable subcritical
secondary loading state of constant magnitude and a
primary destabilizing load that is increased in
magnitude until buckling occurs. The loads considered
are uniform axial compression, pure inplane bending,
transverse tension and compression, and shear.
Results obtained using a special purpose
nondimensional analysis that is well suited for
parametric studies are presented for clamped and simply
supported plates. In particular, results are presented for

a [+45]s graphite-epoxy laminate, and generic buckling

design charts are presented for a wide range of
nondimensional parameters that are applicable to a
broad class of laminate constructions. These results

show the effects of flexural orthotropy and flexural

anisotropy on plates subjected to various combined
loading conditions. An important finding of the
present study is that the effect of flexural anisotropy
on the buckling resistance of a plate can be increased
significantly for certain types of combined loads.

Introduction

Buckling behavior of laminated plates is a topic of
fundamental importance in the design of aerospace
vehicle structures. Often the sizing of many
subcomponents of these vehicles is determined by
stability constraints in addition to strength and
stiffness constraints. One subcomponent that is of
practical importance in structural design is the long
rectangular plate. These plates commonly appear as
subcomponents of stiffened panels used for wing

structures. In addition, long plates appear as
subcomponents of semimonocoque shells used for
fuselage and launch vehicle structures. Buckling
results for infinitely long plates are important because
they often provide a useful conservative estimate of the
behavior of finite-length rectangular plates, and they
provide information that is useful in explaining the
behavior of these finite-length plates. Moreover,
knowledge of the behavior of infinitely long plates can
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provide insight into the buckling behavior of more
complex structures such as stiffened panels.

An important type of long plate that appears as a
subcomponent of advanced composite structures is the
symmetrically laminated plate. Symmetrically
laminated plates, with plies made of the same material,
remain fiat during the manufacturing process and exhibit
flat prebuckling deformation states. These
characteristics and the amenability of these plates to
structural tailoring provide symmetrically laminated
plates with a significant potential for reducing structural
weight of aircraft and launch vehicles. Thus,
understanding the buckling behavior of symmetrically
laminated plates is an important part of the search for

ways to exploit plate orthotropy and anisotropy to
reduce structural weight.

In many practical cases, symmetrically laminated

plates exhibit specially orthotropic behavior. However,
in some cases these plates exhibit anisotropy in the
form of material-induced coupling between pure bending

and twisting deformations. This coupling is referred to
herein as flexural anisotropy and it generally yields
buckling modes that are skewed in appearance, as
depicted in Fig. 1. The effects of flexural orthotropy
and flexural anisotropy on the buckling behavior of
long rectangular plates subjected to single and combined
loading conditions is becoming better understood. For
example, recent in-depth parametric studies that show
the effects of anisotropy on the buckling behavior of
long plates subjected to compression, shear, inplane
bending, and various combinations of these loads have
been presented. 1.2 The results presented in these
references indicate that the importance of flexural
anisotropy on the buckling resistance of long plates
varies with the magnitude and type of the combined

loading condition. However, the extent of the influence
of the combined loading condition on the importance of
neglecting flexural anisotropy in a preliminary design
buckling calculation is not well understood.

The objective of the present paper is to identify the
effects of flexural orthotropy and, in particular, flexural
anisotropy on the buckling behavior of long
symmetrically, laminated plates subjected combined
loads. This objective is accomplished by modeling
various combined loads as a primary system of

destabilizing loads and a secondary system of



subcriticalloads. Theprimarydestabilizingloads
consideredconsistofuniformaxialcompression,shear,
andpureinplanebendingloads,andthesecondary
subcriticalloadsconsideredconsistoftransversetension
orcompressionandshearloads.Resultsarepresented
forplateswiththetwooppositelongedgesclampedor
simplysupported.A numberof genericbuckling
curvesthatareapplicableto awiderangeoflaminate
constructionsare also presentedusing the
nondimensionalparametersdescribedinRefs. 1- 3.

Anolyt;is Description

Often in preparing generic design charts for
buckling of a single flat plate, a special purpose
analysis is preferred over a general purpose analysis
code, such as a finite element code, due to the cost and

effort usually involved in generating a large number of
results with a general purpose code. The results

presented herein were obtained using such a special
purpose analysis. The analysis details are lengthy so
only a brief description of the analysis is presented
herein.

Symmetrically laminated plates can have many
different constructions because of the wide variety of
material systems, fiber orientations, and stacking

sequences that can be used to construct a laminate. A
way of coping with the vast diversity of laminate
constructions is to use convenient nondimensional

parameters. The buckling analysis used in the proposed
paper is based on the classical Rayleigh-Ritz method,
and is derived explicitly in terms of the nondimensional
parameters defined in Refs. 1-3. This approach was
motivated by the need to conduct generic in-depth
parametric studies of buckling behavior and to obtain
results that indicate overall trends and the sensitivity of
the results to changes in the parameters. The
nondimensional parameters used in the present paper are
given by

DI I _I14 .,
Dl2 + 2D_ (2)

13- (D. D22)In

Dl6 (3)
Y= (D21D22) I/4

8 - D26 (4)
(Dl, D_2) 't4

where b is the plate width and _, is the half-wave

length of the buckle pattern of an infinitely long plate
(see Fig. 1). The subscripted D-terms are the bending

stiffnesses of classical laminated plate theory. The

parameters (x_ and 13 characterize the flexural

orthotropy, and the parameters T and 5 characterize
the flexural anisotropy.

The loading combinations included in the analysis
are uniform biaxial tension and compression, uniform
shear, and eccentric inplane bending as depicted in Fig.

1. The longitudinal stress resultant Nx is partitioned

in the analysis into a uniform compression part and a
linearly varying part corresponding to eccentric inplane
bending loads. This partitioning is given by

N_ = Nx_ - Nb[_, + ((h - eo)rl] (5)

where Nxc denotes the intensity of the constant-valued

tension or compression part of the load, and the term

containing N b defines the intensity of the eccentric

inplane bending load distribution. The symbols 80 and

E_ define the distribution of the inplane bending load,

and the symbol r I is the nondimensional coordinate

given by rI = y/b.

The analysis is based on a general formulation that
includes combined destabilizing loads that are

proportional to a positive-valued loading parameter

that is increased monotonically until buckling occurs,
and independent subcritical combined loads that remain
fixed at a specified load level below the point of
instability. These two loading types are referred to
herein as the primary (or destabilizing) and secondary (or
subcritical) loading systems, respectively. In practice,
the subcritical loading system is applied to a plate prior
to the primary loading system with an intensity that is
below the intensity that will cause the plate to buckle.
Then, with the secondary loading system fixed, the
primary loading system is applied by increasing the
magnitude of the loading parameter until buckling
occurs. This approach permits combined loading
interaction to be investigated in a direct and convenient
manner.

The distinction between the primary and secondary
loading systems is implemented in the buckling
analysis by partitioning the prebuckling stress
resultants as follows

Nxc =- N_l + N¢2 (6)

Ny = - Ny I + Ny2 (7)

Nxy = Nxy I + N_y2 (8)

Nb = Nbl + Nb2 (9)
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where the stress resultants with the subscript 1
constitute the primary loading system, and those with
the subscript 2 constitute the subcritical loading
system. The sign convention used herein for positive
values of these stress resultants are shown in Fig. 1.
The normal stress resultants of the primary loading

system, N_ and Ny_ are defined to be positive-valued

for compression loads. This convention results in

positive eigenvalues being used to indicate instability
due to compression loads.

The buckling analysis includes several
nondimensional stress resultants associated with

equations (6) through (9). These dimensionless stress
resultants are given by

c 2
N_j b

n_j- n2(D,l D22)1/2
(10)

Nyi b2
(11)

nyj -/t 2D2 2

Nxyj b 2
l_'_ _1/4

nxyj -- 7_2(D11 _221

(12)

(13)

where the subscript j takes on the values of 1 and 2.
In addition, the primary loading system is expressed in

terms of the loading parameter _ in the analysis by

n_l =Lip (14)

ny I =L2_ (15)

nxy I = L3p (16)

nbl =L4_ (17)

where LI through L 4 are load factors that determine

the specific form of a given primary loading system.
Typically, the dominant load factor is assigned a value
of ! and all others are given as positive or negative
fractions.

Nondimensional buckling coefficients used herein
are given by the values of the dimensionless stress
resultants of the primary loading system at the onset of
buckling; i.e.,

K,,--(n_,l)¢r--'-) K_-(N:')¢_b2
n2(Dll D22)m = L 1P,

(18)

Ky-(nyl)c r _ Ky_( Nyl)crb2
n2D22 -L2p_r

(19)

(Nx")crb2= r_ _u4 = L_ p.
• n2(DII _22:

(20)

Kb_(nbl)c r _ K.= (N"l)crb2
n2(Dil D22)1/2 = L4 i_¢r

(21)

where Per is the magnitude of the loading parameter at

buckling. Positive values of the coefficients K_ and

Ky correspond to uniform compression loads, and the

coefficient K_ corresponds to uniform positive shear.

The direction of a positive shear stress resultant acting

on a plate is shown in Fig. 1. The coefficient K b

corresponds to the specific inplane bending load
distribution defined by the selected values of the

parameters eo and el.

The mathematical expression used in the variational

analysis to represent the general off-centered and skewed
buckle pattern is given by

N

wN(_,rl) = Z (Amsinn_ + BmCOSn{)Om(rl)
m=l

(22)

where _=x/_. and rl=y/b are nondimensional

coordinates, w N is the out-of-plane displacement field,

and A m and B,, are the unkown displacement

amplitudes. In accordance with the Rayleigh-Ritz

method, the basis functions _m(rl) are required to

satisfy the kinematic boundary conditions on the plate
edges at 11= 0 and 1. For the simply supported plates
the basis functions used in the analysis are given by

O,(rl) = sin mm'l (23)

for values of m = 1, 2, 3 ..... N. Similarly, for the

clamped plates, the basis functions are given by

Om(rl) = cos(m- 1)rrrl - cos(m+ 1)/t'rI (24)

Algebraic equations governing the buckling
behavior of infinitely long plates are obtained by
substituting the series expansion for the buckling mode
given by equation (22) into the second variation of the
total potential energy and then computing the integrals
appearing in the second variation in closed form. The
resulting equations constitute a generalized eigenvalue



problemthatdependsontheaspectratioofthebuckle
patternL/b (see Fig. 1) and the nondimensional

parameters and nondimensional stress resultants defined
herein. The smallest eigenvalue of the problem
corresponds to buckling and is found by specifying a

value of k/b and solving the corresponding

generalized eigenvalue problem for its smallest
eigenvalue. This process is repeated for successive
values of X/b until the overall smallest eigenvalue is

found.

Results obtained using the analysis described herein

have been compared with other results for isotropic,
orthotropic, and anisotropic plates obtained using other

analysis methods. These comparisons are discussed in
Refs. 1 and 2, and in every case the analysis described
herein was found to be in good agreement with the
results obtained from other analyses.

Results and Discussion

Results are presented herein for clamped and simply
supported plates loaded by various combinations of
axial compression, transverse tension or compression,
pure inplane bending, and shear. For loading cases
involving shear, a distinction is made between positive
and negative shear loads whenever flexural anisotropy is
present. A positive shear load corresponds to the shear
loads shown in Fig. 1. No distinction between positive
and negative pure inplane bending loads is necessary for
flexurally anisotropic plates.

Results are presented first for [+45]s flexurally

anisotropic plates that show how significant the
interaction between the plate anisotropy and the type of
combined loading can be for an actual laminate. This
thin laminate is representative of spacecraft structural
components and is made of a typical graphite-epoxy
material with a longitudinal modulus El = 127.8 GPa

(18.5 x 106 psi), a transverse modulus E2 = 11.0 GPa

(1.6 x 106 psi), an inplane shear modulus Gi2 -- 5.7

GPa (0.832 x 106 psi), a major Poisson's ratio v12 =

0.35, and a nominal ply thickness of 0.127mm (0.005
in.).

Generic results are presented next, in terms of the
nondimensional parameters described herein, for a range
of parameters that is applicable to a broad class of
laminate constructions. The range of each
nondimensional parameters used herein is given by

0.1<13<3.0,0<y<0.6, and 0<8<0.6. Avalueof

0.6 for y and 8 corresponds to a highly anisotropic
plate. For isotropic plates, 13 = 1 and y = 8 --0.
Moreover, for plates without flexural anisotropy, y = 8
= 0. Values of these parameters corresponding to
several practical laminates are given in Refs. 1 and 2.

To simplify the presentation of the fundamental
generic behavioral trends, results are presented herein for
plates in which y and 8 have equal values. However,
this approach is applicable to laminates such as a

[+35/-15]s laminate made of the typical graphite-

epoxy material described herein. For this laminate, _ =
1.95, y = 0.52, and 8 = 0.51. Furthermore, results

showing the effects of a., or equivalently

(DH/D::) 1/4, on the buckling coefficients are not

presented herein since it has been shown in Refs. 1 and
2 that variations in this parameter only affect the critical

value of the buckle aspect ratio X/b and not the

buckling coefficient. A value of (D N/D22)114= 1 was

used in all the calculations presented herein. For
clarity, the compression, shear, and inplane bending
buckling coefficients, defined by Eqns. (18) (20), and

(21), respectively, are expressed as K x_= 8=0' Ks _= 8=i1'

and Kb_=8=0 when describing the generic results for

which flexural anisotropy is neglected in the analysis.

Results for [+45] 3 Plates

Results are presented in Fig. 2 for a clamped

[+45]_ plate subjected to a destabilizing uniform

uniaxial compression load. In addition, results are
presented for a combined loading condition consisting of
uniform axial compression and either a uniform
transverse tension or a compression subcritical load.
Similar results are presented in Fig. 3 for a
corresponding plate in which the destabilizing load is a
uniform shear load. In these figures, the minimum
value of the loading parameter found by solving the

generalized eigenvalue problem for a given value of L/b

is shown for values of 0 < k/b < 2. Moreover, the

magnitude of the subcritical transverse load is indicated
in the figures by the value of the nondimensional stress

resultant nyz defined by Eqn. (11). A limiting value

of the subcritical load given by ny2 = -4 corresponds to

a wide column buckling mode. The dashed lines shown
in the figures correspond to the actual solutions to the
generalized eigenvalue problem that are obtained when
flexural anisotropy is included in the analysis. In
contrast, the solid lines correspond to the solutions that
are obtained when flexural anisotropy is neglected in the
analysis. The overall minimum value of the loading
parameter for each of the curves is indicated by filled
circles and these values correspond to the values of the
buckling coefficients for each curve. The corresponding
values of k/b are the critical values of the buckle

aspect ratio.
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TheresultspresentedinFig.2indicatethat
neglectingtheflexuralanisotropyinabucklinganalysis
ofapurecompression-loadedplate(ny2= 0)

overestimates the buckling coefficient (minimum
loading parameter) by 30% of the anisotropic buckling

load, and slightly overestimates the critical value of the

buckle aspect ratio k/b. For a transverse tension

subcritical load given by ny2 = 3.5 (87.5% of the

magnitude for a wide column buckling mode), the
results show that the effect of the flexural anisotropy
becomes slightly less important; i.e., the buckling
coefficient is overestimated by 22% for this case.
Neglecting the anisotropy for this case also slightly
overestimates the critical value of the buckle aspect
ratio. However, for a subcritical transverse compression

load given by ny2 = -3.5, the buckling coefficient is

overestimated by 76% when the flexural anisotropy is
neglected in the analysis, and the critical value of the
buckle aspect ratio is slightly underestimated.

The results shown in Fig. 3 for a shear-loaded plate
with a transverse tension or compression subcritical
load and the results shown in Fig. 2 indicate that
neglecting the flexural anisotropy in the buckling
analysis is much more pronounced for the shear-loaded
plate than for the corresponding compression-loaded
plate. In particular, the results presented in Fig. 3
indicate that neglecting the flexural anisotropy in the

buckling analysis of a pure shear-loaded plate (ny 2 = 0)

overestimates the buckling coefficient by 97% of the
anisotropic buckling load as compared to 30% for the
corresponding compression-loaded plate. For a

transverse tension subcritical load given by ny2 -- 3.5,

the results for the shear-loaded plate predict that the
buckling coefficient is overestimated by 75%. More
significantly, for a transverse compression subcritical

load given by ny2 = -3.5, the results predict that the

shear buckling coefficient is overestimated by 209%
when the flexural anisotropy is neglected in the
analysis.

Results similar to the results presented in Figs. 2

and 3 are presented in Figs. 4 and 5 for a [+45], plate

that is loaded by either uniform axial compression or
pure inplane bending, respectively. Two groups of
curves are shown in the figures that correspond to plates
without a subcritical load and with either a positive or
negative subcritical shear load with a magnitude equal to

75% of the corresponding shear buckling coefficient K S

(see Eqn. 20). For the cases in which the anisotropy is
included in the analysis, the buckling coefficients for

positive and negative shear loads are given by K= 6.12

and K_= - 17.16, respectively. For the cases in which

the anisotropy is neglected, the buckling coefficients for

positive and negative shear loads are given by K_=

12.03 and Ks=-12.03, respectively. The results

shown in Figs. 4 and 5 include the effects of neglecting
the anisotropy in the calculation of the subcritical load

n_.2 as well as the actual calculation of the buckling
coefficient.

The results shown in Figs. 4 and 5 indicate that
neglecting the flexural anisotropy in a buckling analysis
of the plate subjected to only uniform axial

compression or pure inplane bending (n_y2 = 0)

overestimates the buckling coefficient by approximately
30% of the anisotropic buckling load, and the critical
value of the buckle aspect ratio is slightly
overestimated. For the subcritical positive shear load

with nxy 2 = 0.75K s , the results predict that the

buckling coefficient is overestimated by about 84% and
66% of the anisotropic buckling coefficient for the
uniform axial compression and pure inplane bending
loads, respectively. Moreover, for both loading
conditions, the critical value of the buckle aspect ratio
is also slightly overestimated when the anisotropy is
neglected in the analysis. In contrast, for the subcritical

negative shear load with nxy2= 0.75K_, the results

predict that the buckling coefficient is underestimated by
about 26% and 16% of the anisotropic buckling
coefficient for the uniform axial compression and pure
inplane bending loading conditions, respectively. In
addition, the critical value of the buckle aspect ratio is
slightly underestimated for the uniform axial
compression load and slightly overestimated for the pure
inplane bending load when the flexural anisotropy is
neglected in the analysis.

Genetic Effects of Flexural Orthotropy

Results are presented in Figs. 6 through 10 that
show the generic effects of plate flexural orthotropy on
the buckling coefficients of clamped and simply
supported plates with y = 6 = 0. The results in Figs.
6, 7, and 8 are for plates subjected to a subcritical
transverse tension or compression load and a
destabilizing uniform axial compression load, pure
inplane bending load, and shear load, respectively.
Similarly, the generic effects of flexural orthotropy on
plates subjected to a subcritical shear load and a uniform
axial compression load or a pure inplane bending load
are shown in Figs. 9 and 10, respectively. The results
in Figs. 9 and 10 are also applicable to plates loaded in
negative shear since the shear buckling coefficients for
identical plates loaded in positive or negative shear have
the same magnitude when anisotropy is neglected in the
calculations. Two sets of curves are shown in Figs. 6
through 10 for values of the orthotropic parameter [_ =
0.5, I, 1.5, 2, 2.5, and 3. The solid curves correspond
to results for clamped plates and the dashed curves are
for simply supported plates. These curves show the
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bucklingcoefficientasafunctionofthenondimensional
transverseload ny2 in Figs. 6 through 8, and as a

function of the nondimensional shear load n_y2 in

Figs. 9 and 10.

The results presented in Figs. 6 through 10 indicate
that the orthotropic buckling coefficients (_' = _ = 0 )
increase substantially as the orthotropic parameter 13
increases. Furthemore, the results in Figs. 6 through 8
indicate that as the subcritical transverse load increases

through positive values (increasing tension), the
buckling coefficients increase substantially. This trend
is shown to be more pronounced for the shear-loaded
plates than for the compression-loaded plates or the
plates loaded by pure inplane bending. Moreover, the
increase in buckling coefficient with increasing
subcritical tension load is predicted to be slightly more
pronounced for the simply supported plates than for the
clamped plates. The results presented in Figs. 9 and 10
for the plates with subcritical shear loads indicate a
substantial reduction in the buckling coefficient as the
magnitude of the nondimensional shear load increases.
In addition, the results also predict this trend to be
slightly more pronounced for the simply supported
plates than for the clamped plates.

Interaction of Flexural Anisotropy and Loading

Results are presented in Figs. 11 through 18 that
show the generic effects of plate flexural anisotropy and
combined loading condition on the buckling coefficients
of clamped and simply supported plates. In particular,
the results shown in Figs. 11, 12, 13, and 14 are for
plates subjected to a subcritical transverse tension or
compression load and uniform axial compression, pure
inplane bending, and shear destabilizing loads,
respectively. In addition, the results shown in Figs. 15,
16, 17, and 18 are for plates subjected to a subcritical
shear load and uniform uniaxial compression and pure
inplane bending, respectively. The results in Figs. 15
and 17 are for a positive subcritical shear load, and the
results in Figs. 16 and 18 are for a negative subcritical
shear load. In each of Figs. 11 through 18, the ratio of
the anisotropic buckling coefficient to the corresponding
orthotropic buckling coefficient computed with T = _ =
0 (see Figs. 6 through 10) is given as a function of the
orthotropic parameter 13for discrete equal values of the
anisotropic parameters ()' = 5) ranging from 0.1 to
0.6. For each value of T=_5 given in Figs. 11
through 14, three curves are presented. The solid lines
correspond to a value of the nondimensional transverse

load ny2 = 0 used in the calculations (no subcritical

load). Similarly, the finely dashed and coursely dashed

lines correspond to values of ny2 = -0.5 (compression)

and 0.5 (tension), respectively, for the simply supported

plates and to values of ny2 = -2 (compression) and 2

(tension), respectively, for the clamped plates. The

magnitudes of these values correspond to 50% of Ky,

the buckling coefficient corresponding wide-column

collapse (Ky = 1 and 4 for simply supported and

clamped plates, respectively). For each value of 7 = 8
given in Figs. 15 through 18, four curves are presented.
The solid lines correspond to the value of the

nondimensional shear load n_y2 -- 0 (no subcritical load).

Similarly, the finely dashed, moderately dashed, and

coursely dashed lines correspond to values of nxy2 =

0.25K s, 0.5K 5, and 0.SKs, respectively, where K s is the

shear buckling coefficient. More specifically, K s is the

positive shear buckling coefficient in Figs. 15 and 17,
and the negative shear buckling coefficient in Figs. 16
and 18. For each case, the shear buckling coefficient is
a function of 13,y, and _5.

The results for plates subjected to a subcritical
transverse tension or compression load and uniform
uniaxial compression presented in Figs. 11 and 12 show
that the anisotopic buckling coefficient is always less
than the corresponding orthotropic buckling coefficient
for the full range of parameters considered. In addition,
these results predict that the effects of neglecting
anisotropy are more pronounced for the plates with the

transverse compression loads than for the plates with no

subcritical load (ny2= 0) or a transverse tension load.

Moreover, these results predict that this trend is slightly
more pronounced for the clamped plates than for the
simply supported plates. The results also predict that
the reduction in buckling coefficient due to anisotropy

is generally larger for the clamped plates with ny2 = -2

(transverse compression at a magnitude of 50% of the
wide column buckling coefficient) than for the
corresponding simply supported plates. However, the
results also predict that the reduction in buckling
coefficient due to anisotropy is generally smaller for the

clamped plates with ny2 = 0 or 2 (transverse tension at a

magnitude of 50% of the wide column buckling
coefficient) than for the corresponding simply supported
plates.

The results for simply supported plates subjected to
a subcritical transverse tension or compression load and
pure inplane bending presented in Fig. 13, and
corresponding results for clamped plates not presented
herein, also show that the anisotopic buckling
coefficient is always less than the corresponding
orthotropic buckling coefficient for the full range of
parameters considered. These results also predict that
the effects of neglecting anisotropy are more
pronounced for plates with a transverse compression

load than for plates with ny2= 0 or the transverse tension

load, but not to the extent that is exhibited by the
corresponding plates with the uniaxial compression
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load. Moreover, these results predict that this trend is
slightly more pronounced for clamped plates than for
simply supported plates, but not to the extent that is
predicted for the corresponding plates with a uniaxiai
compression load. Furthermore, like the plates with a
uniaxial compression load, the results also predict that
the reduction in buckling coefficient due to anisotropy

is generally larger for clamped plates with ny2 = -2

(transverse compression) than for the corresponding
simply supported plates. Similarly, the results also
predict that the reduction in buckling coefficient due to
anisotropy is generally smaller for clamped plates with

ny2 -- 0 or 2 (transverse tension) than for the

corresponding simply supported plates.

The results for simply supported plates subjected to
a subcritical transverse tension or compression load and
a positive shear load presented in Fig. 14 and
corresponding results for clamped plates not presented
herein also show that the anisotropic buckling
coefficient is always less than the corresponding
orthotropic buckling coefficient. However, these results
also show that this trend is reversed for negative shear
loads. These results also predict that the effects of
neglecting anisotropy are generally more pronounced
for plates with transverse compression loads than for

plates with ny2 = 0 or with transverse tension loads, but

not to the extent that is exhibited by the corresponding
plates with uniaxial compression loads and slightly
more than the corresponding plates loaded by pure
inplane bending. Moreover, these results predict that
this trend is also slightly more pronounced for clamped
plates than for simply supported plates. Furthermore,
like the plates with the uniaxial compression loads, the
results predict that the reduction in buckling coefficient
due to anisotropy is generally larger for clamped plates

loaded in positive shear and with ny2 = -2 (transverse
compression) than for the corresponding simply
supported plates. Similarly, the results also predict that
the reduction in buckling coefficient due to anisotropy
is generally smaller for the clamped plates loaded in

positive shear and with nr2 = 0 or 2 (transverse tension)

than for the corresponding simply supported plates. For
the plates loaded by negative shear, these trends are
reversed. Overall, the results presented in Figs. 11
through 14 indicate that plates loaded by positive shear
typically exhibit substantially larger reductions in the
buckling coefficient when flexural anisotropy is
neglected in the analysis than the corresponding plates
loaded by uniform axial compression or pure inplane
bending. In contrast, the results for plates loaded by
negative shear predict sizeable increases in the buckling
coefficients when the flexurat anisotropy is included in
the calculations.

The results presented in Fig. 15 for simply
supported plates loaded by uniform axial compression

and a positive subcritical shear load, and the results
obtained for the corresponding clamped plates, predict
monotonic reductions in buckling coefficient with
increasing values of the anisotropic parameters. This
same trend is also predicted for increasing magnitudes of
the positive shear load as indicated by the four different
line types shown in Fig. 15. Moreover, these results
show that the reductions in buckling coefficients are
slightly more pronounced for the simply supported
plates than for the clamped plates. More importantly,
these results indicate that the reduction in buckling
coefficient associated with neglecting anisotropy in the
calculations is substantially larger when the positive
shear load is larger than approximately 50% of the
corresponding shear buckling load.

The results shown in Fig. 16 for simply supported
plates loaded by uniform axial compression and a
negative subcritical shear load, and results obtained for
corresponding clamped plates, predict monotonic
reductions in buckling coefficient with increasing values

of the anisotropic parameters for the values of nxy2 = 0

and 0.25K. However, for the larger values of nxy2,

the results predict increases in buckling coefficient with
increasing values of the anisotropic parameters as
anticipated from the previous results presented herein.
This seemingly unusual trend for the negative shear load
is a manifestation of the phase shift in the compression-
shear buckling interaction curves caused by flexural
anisotropy that has been reported in Ref. 1. In addition,
these results show this trend to be slightly more
pronounced for clamped plates than for simply
supported plates. Furthermore, these results indicate
that the importance of anisotropy on the buckling
resistance changes dramatically with the magnitude of a
negative subcritical shear load.

Results similar to those presented in Fig. 15 are
presented in Fig. 17 for simply supported plates loaded
by pure inplane bending and a positive subcritical shear
load. These results, and results obtained for

corresponding clamped plates, also predict monotonic
reductions in buckling coefficient with increasing values
of the anisotropic parameters and increasing magnitudes
of a positive shear load. However, these results show
that the reductions in buckling coefficient are practically
the same for the simply supported and clamped plates.
The results also indicate that the reduction in buckling
coefficient associated with neglecting anisotropy in the
calculations is substantially larger when a positive shear
load is larger than approximately 50% of the
corresponding shear buckling load. Comparing the
results in Figs. 15 and 17 suggests that the reductions
in buckling coefficient due to neglecting flexural
anisotropy is slightly more pronounced for plates loaded
by uniform axial compression than for those loaded by
pure inplane bending, particularly for the larger
magnitudes of a subcritical shear load.
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Results similar to those presented in Fig. 16 are
presented in Fig. 18 for simply supported plates loaded

by pure inplane bending and a negative subcritical shear
load. These results, and results obtained for

corresponding clamped plates, also predict monotonic
reductions in buckling coefficient with increasing values

of the anisotropic parameters for the values of n_y2 = 0

and 0.25K r Unlike the results for compression loaded

plates, the results in Fig. 18 also predict monotonic
reductions in buckling coefficient with increasing values

of the anisotropic parameters for nxy2 = 0.5K_. For n_y2

--- 0.8K s, the results predict increases in buckling

coefficient with increasing values of the anisotropic

parameters. This unusual trend for a negative shear
load is also a manifestation of the phase shift in the
pure inplane bending-shear buckling interaction curves
caused by flexural anisotropy that has been reported in
Ref. 2. Moreover, the difference between the trends for
plates loaded by negative shear and pure inplane
bending or uniform axial compression is manifested by
the pronounced difference in shape of the corresponding
buckling interaction curves presented in Refs. 1 and 2.
The results for the plates loaded by pure inplane bending
also show the trends described above to be slightly more
pronounced for the clamped plates than for the simply
supported plates. Comparing the results in Figs. 16
and 18 also suggests that the change in buckling
coefficient due to the interaction between flexural

anisotropy and the magnitude of negative shear is
substantially more pronounced for plates loaded by
uniform axial compression than for those loaded by pure
inplane bending.

(_gn¢ioding Remarks

A parametric study of the buckling behavior of
infinitely long symmetrically laminated anisotropic

plates subjected to combined loads has been presented.
A special purpose nondimensional analysis that is well
suited for parametric studies of clamped and simply
supported plates has been described and its key features
have been discussed. The results presented herein have
focused on the interaction of a stable subcritical

secondary loading state and a primary destabilizing

loading state. The interaction of uniform axial
compression, pure inplane bending, transverse tension
and compression, and shear loads with plate flexural
anisotropy and orthotropy have been examined. In

particular, results have been presented for [+45 L thin

graphite-epoxy laminates that are representative of
spacecraft structural components. In addition, a
number of generic buckling results have been presented
that are applicable to a broad class of laminate
constructions, and that show explicitly the effects of
flexural orthotropy and flexural anisotropy on plate
buckling behavior under combined loads.

The most important finding of the present study is
that the importance of flexural anisotropy on the
buckling behavior of a long plate is strongly dependent
on the type of combined load applied and its
magnitude. Specifically, the results presented herein
show that significant errors (on the order of 100%) can
be made calculating buckling coefficients of plates
subjected to combined loads when flexural anisotropy
is neglected. Overall, the results presented herein
show that the buckling coefficients increase

significantly as the orthotropic parameter _ increases,
and decrease significantly as the anisotropic parameters
(7-- 8) increase for all load combinations considered
except those involving negative shear loads. For this
loading case, the trend is generally reversed. The
results presented herein also generally show that the
effects of plate anisotropy are more pronounced for
clamped plates than for simply supported plates
subjected to combined loads.

.

2.

.
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Fig. 17 Effects of orthotropic parameter 13 and anisotropic

parameters ), and _i on buckling coefficients for simply
supported plates subjected to pure inplane bending and positive
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